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What is VCC systems?
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What is VCC systems?
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Pressure and superheat temperature
are important thing to be controlled
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Superheat temperature: temperature of a vapor above the saturated vapor temperature.



Pressure and superheat temperature
are important thing to be controlled
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Pressure and superheat temperature
are important thing to be controlled
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Pressure and superheat temperature are
Important thing to be controlled
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Superheat temperature: temperature of a vapor above the saturated vapor temperature(T,
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Fault cause severe damage to the system
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Nonlinear model for VCC system

Static Models
° Compressor model
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Nonlinear model for VCC system

Static Models
° Compressor model

Dynamic models
> Condenser
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° Electrical expansion valve > Evaporator
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Linearization of Nonlinear model

Given nonlinear model

[Z(a:,’u;)i" = f(w,u)]— Z(wv,u)i = f(r,u)
y = g b= Z(x,u)" f(r,u)
= F(z,u




Linearization of Nonlinear model

Given nonlinear model

Z(@wi = f(o,u)m—7 00 = f)

' Setting an operation point r=x,+0r

U = Up + Ou
ou
l Tyl

expanding



Linearization of Nonlinear model

Given nonlinear model

Z(@wi = f(o,u)m—7 00 = f)

' Setting an operation point r=x,+0r
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Model order reduction

For the linearized model
r = Adx + Bdou
y = Cox+ Dou

reduced order model can be obtained as

1 1 1
[ A, B, ] B [ Sp (A — Ap Al A0SR T N2 (B — A AL By)
* _1
Cr Dy —(C — Co AL, A9))SL 2 D, — Cy — AL By

Reduction process

1. Get controllability & observability Gramians using 4. Calculate

Lyapunov equation 5 7T .
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Nonlinear model vs. reduced linear model
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Fault estimation using Pl-observer

Dynamic model including fault and disturbance

i(t) = Adx(t) + Bou(t) + By f(t) + Gd(t), B, : actuator fault matrix spanned by matrix 5,
y(t) = Cox(t), G : matrix which describe the external disturbance.

Proportional-Integral observer for state and fault detection

x(t) = Adi(t)+ Bou(t) + Lp (y(t) —(t)) + Bff(t), 4 Estimate of states,

gt = Csi(b), y Estlmat.e of fault, .

% . Lp : Proportional observer gain,
ft) = Li(y(t)—9), Ly :Integral observer gain.




Fault estimation using Pl-observer

Dynamic model including fault and disturbance

i(t) = Adx(t) + Bou(t) + By f(t) + Gd(t), B, : actuator fault matrix spanned by matrix 5,
y(t) = Cox(t), G : matrix which describe the external disturbance.

Proportional-Integral observer for state and fault detection

x(t) = Adi(t)+ Bou(t) + Lp (y(t) —(t)) + Bff(t), 4 Estimate of states,

gty = Cox(t), Uy :Estimatg of fault, .
: Lp : Proportional observer gain,

f@) = Li(yt)—9), L7 :Integral observer gain.

Define state & fault estimation error
e.(t) = x(t) - &(t). es(t) = f(t)— f(t)

Assume f(t) = 0, then augmented error dynamics is

P vl I L



Fault estimation using Pl-observer

Define é(t)=[ex €] then

ety = (A—LC)e(t)+Gd(t)
where
A_[‘g if],L_H”,c—[c 0},@—[?].

Using Hoo robust theory, robust Pl-observer can be designed as

Theorem 1: Given a scalar 7, > 0, there exist an Hoo observer if and only if there
exists P = P* >0, Y such that the following matrix inequality

GTP I 0

ATP L PA_CTYT _YC PqG I
] 0
I 0 —v1

The Hoo observer gain matrix is given by L = P~1Y".




Observer based fault-tolerant control

Fault-tolerant controller design

System Dynamics Observer Dynamics

p(t) = Adx(t)+ Bou(t)+ By f(t) + Gd(t), I(t) = Adi(t)+ Bou(t) + Lp (y(t) — (1)) + By f(1).
y@t) = Cox(t), ) gty = Coxt),
oult) = Kpda(t) + I, 1(t)] i) = Lty -9).




Observer based fault-tolerant control

Fault-tolerant controller design

&(t) = Adx(t)+ Bou(t) + By f(t) + Gd(t), I(t) = Adi(t)+ Bou(t) + Lp (y(t) — (1)) + By f(1).
y(t) = Cox(t), ) gty = Coxt),
oult) = Kpdi(t) + Ky f(t)) ft) = Liwt) -9,
(-5

Augmented system dynamics

[ilzl(A+pr) A_B{J(j”%‘]%i]d@)

where B=[0 Byl




Observer based fault-tolerant control

Fault-tolerant controller design

System Dynamics Observer Dynamics

I

&(t) = Adx(t)+ Bou(t) + By f(t) + Gd(t), I(t) = Adi(t)+ Bou(t) + Lp (y(t) — (1)) + By f(1).
y(t) = Cox(t), ) gty = Coxt),
oult) = Kpda(t) + I, 1(t)] i) = Lty -9).
<0 (£, =-B'B;]

Augmented system dynamics

[ilzl(A+pr) A_BLcll(Sj]—l_[g]d(t)

where B=[0 Byl

—> This mean that separation property holds, so that the state-feedback gain K,
and the observer gain [, can be designed separately.



Observer based fault-tolerant control

From system dynamics and input we can get

&= (A+ BKp)dx+ Brey + Gd

Theorem 2: The closed loop VCC system is asymptotically stable and
ITayllc < e with input constraint [ou;(t)] < du;max if there exist matrices
X>0,K , and Z = ZT such that

I G X

Z K
G —~y.I 0 }<0, [KT X]>0’
X 0 —Yed

where I' = XAT + AX + BK + KTBT, Z;; < 6u? ., and feedback gain
Kp = KXt




Simulation Result
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Conclusion

* Reduced linear model of vapor compression cycle system is

obtained.
» Robust Fault estimation using Pl-observer designed.

» Observer-based Robust Fault-tolerant control with input

constraint was proposed.

» Some method can be applied for the system to be stable globally.
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