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Small difference In initial conditions
yield widely diverging outcomes

Examples of Chaotic system

Weather system Lorenz attractor Chen attractor



Small difference In initial conditions
yield widely diverging outcomes
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What we did Is..

« Synchronization of chaotic system with:

» Complex number states
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What we did Is..

« Synchronization of chaotic system with:

» Complex number states
> Different dimensional

» Unknown parameter



Problem Formulation

» Consider the following drive-response chaotic complex systems

X=f(x)+F(x)& &
y =9(y)+G(y)e+u(t), @

T . .
x(t) = [X11 cee Xm] is a state complex vector of the drive system (1),

T
y(t) = [yl’ A ] is a state complex vector of the response system (2),

* Define the error vector

e(t) = y(t) — Hx(t), @

nXm . - . .
HeC is a nonzero complex projective matrix whose components are constant complex numbers.



Method

x=f(X)+F(x)0

Q

Response system

Controller
u = y=9(y)+G(y)p+u
&

Make y to follow x

Subscript ‘r’ and ‘i’ represent real parts and imaginary parts of a complex matrix or vector or variable.
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Method

1. Use scaling matrix to match dimensions

%= f(x)+F(x)6 e(t) = y(t) — Hx(t),

&

Response system

Controller
u = y=9(y)+G(y)p+u
€

Make y to follow x

Subscript ‘r’ and ‘I’ represent real parts and imaginary parts of a complex matrix or vector or variable.
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Method

1. Use scaling matrix to match dimensions
e(t) = y(t) — Hx(t),

2. Derive error dynamics separately &
Design controllers separately
into real and imaginary

x=f(X)+F(x)0

&

Response system

Controller
u = y=9(y)+G(y)p+u
€

Make y to follow x

Real part

Real part € =0,(y)-H f.()+H;f(x)
Controller _{HrFr (x)-H.F (x)}e
ad G, (Y)g+U, ()
Controller Lé _é +id ]
E r |

AR Imaginary part

Imaginary s — (V) H

Conroller & =g;(y)-H, f.(x)-H;f.(x)

u; —{H,F()+HF (x)}0

+G,(Y)p+u,(t)

Subscript ‘r’ and ‘i’ represent real parts and imaginary parts of a complex matrix or vector or variable.
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Control inputs and Update laws
for an adaptive controller

Theorem 1: For the chaotic complex drive system (1), the response system
(2) and the scaling matrix H, the Adaptive generalized complex projective
synchronization(AGCPS) of the chaotic complex systems Is accomplished if a
control input and adaptive laws are chosen as follows

e Control inputs « Update Laws

u () =-9,(y)+HF.()-HF(x)

0=—K,[{H.F. ()~ HF} e (t
+{H,F.()—HF (x)}0 {HF0-HEM}

—G, (y)p—Ke,(t) (4) +{H F(x)+HF.x)} ¢ (t)} (6)
U; (t):_gi(y)+HrFi(X)+HiFr(X) qu K¢ [Gr(y)Ter(t)+Gi(y)Tei (t)i| (7)

+{H.F,(x)+HF.(x)}0

—G,(y)p—Ke(t) (5)

‘hat’ represents the estimation of parameter vector of a complex chaotic systems.



Proof of the theorem

» Choose the following Lyapunov function candidate:

e e +eiTei}+%K91§Té+%K¢15T5, (®)
é—@, and ¢Z=g$—¢.

V(t) =

N |-
—~—

where 6

» Take a time derivative of (8) and substituting (4)—~(7) yields
Vt)=e," | {H.F()-HF(X}6-G (y)§-Ke ()]
+e | —{H,F () +HF ()} 6-G,(y)§—Ke,(t) |
+K9‘1§T§ +K ¢‘1¢7T¢?.
= e, Ke, (t) —&;" Ke;(t)

= —Z; kj |:erj2 + eij2] < kmin ||e(t)||
j=



Numerical Simulations

* Hyperchaotic complex o Complex Chen system
Lorenz-type system (Response System)
(Drive system)

(% =a(% %) Yy =aly, - y,)+y,
<X2:7/X1—X2_X1X3+X4 yZ:(b—a)y1+by2—y1y3+U2
Xy =1(X %, + XX, ) — % Vs =5 (VYo + ViV ) —CYs +Uq
Xy = PX + X,

N\

a=14,=3,y=45p=-5 u=-4 a=28,b=22,c=1
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Numerical Simulations

» Hyperchaotic complex Lorenz-type e Complex Chen system
system (Response System)
(Drive system)
X1 (Xz_xl) Y1:a(y2_y1)+u1
<X2:7X1 Xy =X X3 + X, <yQ:(b_a)yl+byQ_ylye,+uz
X3 =3 (X1X +XX, ) £Xs \ysz%(71y2+y172)_CY3+u3
(X, = PX + X,
a=14,=3,y=45p=-5u=-4 a=28,b=22,c=1

o Complex projective matrix

0.1+0.5i 0.1i 0 0
0 0.5+0.2i 0.5+0.1 0
0 0 0.1 0.2+0.5i

H



Numerical Simulations

* We can represent the drive system and the response system as a form of
(1) and (2), then

e Drive system

x= f.00+F, 000 +i{ f,(x)+F, (X8},

0
fr (X) _ X1 Xeg — X T Xy
Xrlxrz + Xilxiz
i 0
_sz Xrl 0 0
0 0 x
F.(x)= .
0 —X5; 0
0 0 0
X,-%, 0 0 0
0 0 x, 0
Fi (X) =
0 0 0 O
0 0 0 X

f-(X): A3 T N2 i4

X X

0

0
0

X

+ X

Response system

y=0,(y)+G, ()e+i{g;(y) + G (¥)e} +u(t),

0 0
gr(x) = “YYres v O (X) = {_yuym |
| YerYes + YiaYio 0
_yr2 Y 0 0
G(X= “Y¥Yu Ya+Y¥r O }
0 0 —Y,3

Yio = Ya 0 0
G(X)=| -V YotV O,

0 0 0

g=[a b c]T



Control inputs and Update laws
for an adaptive controller

Theorem 1: For the chaotic complex drive system (1), the response system
(2) and the scaling matrix H, the Adaptive generalized complex projective
synchronization(AGCPS) of the chaotic complex systems Is accomplished if a
control input and adaptive laws are chosen as follows

e Control inputs « Update Laws

u () =-9,(y)+HF.()-HF(x)

0=—K,[{H.F. ()~ HF} e (t
+{H,F.()—HF (x)}0 {HF0-HEM}

—G, (y)p—Ke,(t) (4) +{H F(x)+HF.x)} ¢ (t)} (6)
U; (t):_gi(y)+HrFi(X)+HiFr(X) qu K¢ [Gr(y)Ter(t)+Gi(y)Tei (t)i| (7)

+{H.F,(x)+HF.(x)}0

—G,(y)p—Ke(t) (5)

‘hat’ represents the estimation of parameter vector of a complex chaotic systems.



States are synchronized by
using adaptive controller

e Synchronization errors in an example
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Parameters converge to actual
values using adaptive law

< Parameters of Drive system> < Parameters of Response system >
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Conclusions:

» With complex number, chaotic systems
becomes much more complicated.

« Complex number chaotic systems can be
synchronized although the parameters of the

systems are unknown.

 Using scaling matrix, sync

nronizations of

chaotic systems which have different

dimension can be accomp

Ished.
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